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An integral equation representation of wide-band
electromagnetic scattering by thin sheets

Yoonho Song∗, Hee Joon Kim‡, and Ki Ha Lee∗∗

ABSTRACT

An efficient, accurate numerical modeling scheme has
been developed, based on the integral equation solu-
tion to compute electromagnetic (EM) responses of thin
sheets over a wide frequency band. The thin-sheet ap-
proach is useful for simulating the EM response of a
fracture system in the earth. The focus of this develop-
ment has been the accuracy of the numerical solution
over a wide-band frequency range of up to 100 MHz.
The effect of displacement currents is included to cor-
rectly evaluate high-frequency EM scattering.

Currently, EM responses of two thin sheets with diffe-
rent geometrical and electrical properties embedded in a
three-layer earth can be modeled over a frequency band
of 10−3 to 108 Hz. The layered earth and the sheets can be
electrically dispersive, an important feature that allows
analysis of frequency-dependent characteristics of the
model under investigation. The source field can be gene-
rated by a remote or local electric or magnetic dipole
located on the surface or in a borehole. A plane-wave
source can also be used, and numerical analyses have
been made for magnetotellurics and the high-frequency
impedance method.

INTRODUCTION

The thin-sheet modeling scheme is an efficient tool that
offers valuable insight into a particular class of 3-D electro-
magnetic (EM) scattering problems such as detecting platelike
ore bodies and fluid-filled fractures. Since Price (1949) intro-
duced this innovative approach, various authors (Annan, 1974;
Lajoie and West, 1976; Vasseur and Weidelt, 1977; Weidelt,
1981; Walker and West, 1991; Fainberg et al., 1993) have
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presented numerical implementation of the integral equation
formulation.

In modeling platelike structures using the thin sheet, one
needs to ensure the conductor is electrically thin (Joshi et al.,
1988)—that is, the electric field remains constant through the
thickness of the plate. A realistic example of a thin sheet is a
laminated vein of ore body in an otherwise layered host rock.
A fracture, or a system of fractures, is a commonly encountered
geologic feature in environmental and engineering problems
and can be represented by a thin sheet. In this case, one can con-
sider the fracture in terms of its admittance, a lumped parame-
ter defined by the product of the thickness and the admittivity
(or conductivity under quasi-static conditions) of the fracture.
When valid, the thin-sheet approximation reduces the simu-
lation domain to two dimensions. This dramatically reduces
memory requirements; as a result, it is possible to compute the
EM responses of this important class of models even on a PC.

Following Weidelt’s (1981) elegant formulation for the thin-
sheet integral equation, we have extended the theory and
written an algorithm to include the effect of the displacement
currents at high frequencies. Also, we derived an analytic ex-
pression for the singular cell.

THIN-SHEET INTEGRAL EQUATION

We consider two sheets embedded in a three-layer earth as
shown in Figure 1. The source field can be generated by an elec-
tric or magnetic dipole source on the surface or in a borehole.
The conductivity and electrical permittivity of host rock and
sheets are arbitrary. They can even be dispersive to accom-
modate frequency-dependent electrical properties described
by a Cole-Cole relaxation formula (Cole and Cole, 1941), for
example. In the following formulation, we only consider one
sheet. Extension of this formula to include multiple sheets is
straightforward.
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Following Weidelt (1981), we write for the electric field E(r)
at field point r

E(r) = Ep(r)− ẑ
∫

S
G(r, r′) · JS(r′) dS′

= Ep(r)− ẑ
∫

S
G(r, r′) · τ (r′)ES(r′) dS′, (1)

where the integration is over the surface area occupied by the
thin sheet, Ep(r) is the primary electric field in the absence of
the sheet, G(r, r′) is the electric Green’s tensor, the subscript S
for the electric fields and currents indicates the tangential com-
ponent, and ẑ= iωµ is the impedivity, with ω being the angular
frequency and µ being the magnetic permeability assumed to
be that of free space. Note that JS(r′) is the scattering current
in the sheet, which is the product of the tangential component
of the total electric field in the sheet ES(r′) and the anoma-
lous admittance of the sheet τ (r′). The anomalous admittance
is given by

τ (r′) = {1σ (r′)+ iω1ε(r′)}t, (2)

where t is the thickness of the sheet,1σ (r′) is the difference in
conductivity between the sheet and the surrounding medium,
and 1ε(r′) is the difference in electrical permittivity. Expres-
sion (1) becomes a Fredholm integral equation of the second
kind if the field point r is on the sheet. If we consider only the
tangential component of electric fields, equation (1) is written
as

ES(r) = Ep
S(r)− ẑ

∫
S

GS(r, r′) · τ (r′)ES(r′) dS′. (3)

The subscript S for the Green’s tensor indicates the tangential
electric field at r resulting from a scattering current source at
r′. The Green’s tensor is reduced to a 2× 2 dyadic through
successive rotation of coordinates about the dip (β) and strike
(α) (Zhou, 1989):

FIG. 1. Geometry of thin sheets embedded in a three-layer
earth; ai , bi , αi , and βι are the strike length, depth extent
in the dip direction, strike, and dip angle of the i th sheet,
respectively.
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 .
(4)

Integration of Green’s tensor may impose a significant nu-
merical instability for a resistive host or small propagation
constant since every element has a term divided by the propa-
gation constant, as shown later. To solve this problem, Weidelt
(1981) uses the Helmholtz theorem to write the vector va-
nishing at infinity as the sum of nonrotational and solenoidal
components. Separating the Green’s tensor into numerically
stable parts and defining the scattering current in the sheet
as the sum of the divergence-free induction current part and
the curl-free conduction current or current channeling part,
Weidelt’s (1981) approach may be generalized as

GS(r, r′) = S+ 1
k2

j
∇SΦ, (5)

JS(r) = ∇S× (ĉψ)+ k2
j∇Sϕ, (6)

ĉ = â× b̂, (7)

and

∇S = ∂

∂a
â+ ∂

∂b
b̂ =

(
cosα

∂

∂x
+ sinα

∂

∂y

)
â

+
(
−sinα cosβ

∂

∂x
+ cosα cosβ

∂

∂y
+ sinβ

∂

∂z

)
b̂,

(8)

where the propagation constant at the j th layer is

kj =
√
ω2µε j − iωµσ j (9)

and where â and b̂ are the unit vectors in the direction of strike
and dip, respectively. The terms S and ∇SΦ are to be deter-
mined in a layered earth using boundary conditions and the
reciprocity principle. The vortex current ∇S× (ĉψ) is confined
to the sheet so that the potential ψ may be taken as constant
along the edge of surface S. Substituting equations (5) and
(6) into equation (3), the integral of the term containing 1/k2

j

vanishes and the integral equation reduces to

ES(r) = Ep
S(r)− ẑ

∫
S

{
S · ∇′S× (ĉψ)

+ (k2
j S+∇SΦ

) · ∇′Sϕ} dS′. (10)

This formulation is suitable for modeling EM responses of
sheets over a wide range of frequencies in a layered earth of
arbitrary electrical properties. Equation (10) can be discretized
into a system of equations by dividing the sheet into a number



748 Song et al.

of cells of constant admittance, the size of each cell being small
enough to assume a constant scattering current within the cell:

N∑
k=1

{(
δk,l I+ ẑτl

∫
Sk

S dS′
)
· [∇′S× (ĉψk)]

+
[

k2
j δk,l I+ ẑτl

∫
Sk

(
k2

j S+∇SΦ
)

dS′
]
· (∇′Sϕk)

}
= τl Ep

s,l , l = 1, 2, . . . , N = Na × Nb. (11)

Hence, the scattering current or the tangential electric field in
each cell of the sheet is calculated by first solving equation (11)
for the potentials ψ and ϕ and then approximating each com-
ponent by curl and gradient of potentials at four corner points
of each cell:

τEa
i, j ≈

1
21b

(ψi−1, j − ψi−1, j−1 + ψi, j − ψi, j−1)

+ k2
j

21a
(ϕi, j−1 − ϕi−1, j−1 + ϕi, j − ϕi−1, j ),

τEb
i, j ≈

−1
21a

(ψi, j−1 − ψi−1, j−1 + ψi, j − ψi−1, j )

+ k2
j

21b
(ϕi−1, j − ϕi−1, j−1 + ϕi, j − ϕi, j−1), (12)

where

1a = a

Na
, 1b = b

Nb
.

There are 2Na Nb independent linear equations because the
tangential electric field on the sheet is represented by only two
directional components in â and b̂. The number of unknowns,
which are potentials ψ and ϕ at each nodal point of the cell,
is actually (Na+ 1)× (Nb+ 1). A closer look at the nature of
the potentials makes it possible to avoid this computational
inconsistency. Since the potential of the divergence-free part
ψ is constant along the edge of the sheet, by setting all the
edge values to be zero, only (Na− 1)× (Nb− 1) values must be
calculated. Also, because only the derivatives of potentials ϕ
are necessary in equation (11), the resultant tangential electric
fields remain unchanged when a constant is added to the poten-
tial. In addition, since the numerical evaluation of the gradient
in equation (12) always includes the pair of even and odd or-
ders of i and j , one can select two arbitrary constants which
have no effect on the results. A convenient set of constants is
(Weidelt, 1981)

ϕNa+1,Nb = ϕNa+1,Nb+1 = 0. (13)

Consequently, the total number of unknowns becomes equal
to the number of linear equations.

The resultant EM fields at receiver locations are represented
as

E(r) = Ep(r)− ẑ
N∑

k=1

τk

∫
Sk

G(r, r′) dS′ · ES(rk) (14)

and

H(r) = Hp(r)−ẑ
N∑

k=1

τk

∫
Sk

∇×G(r, r′) dS′ ·ES(rk). (15)

In a layered earth, Green’s tensor is generally represented by
potentials with TE and TM modes of polarization (Ward and
Hohmann, 1988) and can be separated into a whole space and
layered-earth parts. Each element of the whole-space Green’s
tensor can be calculated accurately using the closed-form for-
mula. The integration of Green’s tensor elements over the
cell is done numerically using Simpson’s rule or Gaussian
quadrature, according to the order of derivatives of the ker-
nels. Numerical difficulty arises at the singular cell at which
r= r′. Since the scalar Green’s function becomes larger as r
gets closer to r′, accurate evaluation of the singular integral is
the most important factor determining the accuracy of the inte-
gral equation modeling. Note that the scalar Green’s function
is symmetric about the singular point. We therefore replace the
square singular cell with a circular disk of the same area. It is
known that the singular cell integrals have closed-form results:∫

S0

e−ik|r−r′|

4π |r− r′|dS′ ∼= i

2k
(e−ikρ0 − 1) (16)

and ∫
S0

∂2

∂a2

e−ik|r−r′|

4π |r− r′|dS′ =
∫

S0

∂2

∂b2

e−ik|r−r′|

4π |r− r′|dS′

∼= − (1+ ikρ0)e−ikρ0

4ρ0
, (17)

where ρ0 is the radius of the circular disk and the integral of
cross-derivative terms vanishes.

Evaluation of the layered-earth Green’s tensor and its inte-
gration over the cell is also done numerically. The Green’s ten-
sor elements can be represented by Hankel transforms (Ward
and Hohmann, 1988) and are usually evaluated numerically
using digital filtering techniques. In the high-frequency range,
highly oscillatory kernels associated with displacement cur-
rents often cause the digital filtering techniques to fail. We used
a numerical algorithm using Gaussian quadrature and contin-
ued fractions by Chave (1983) with a modification to accom-
modate the branch-cut integral when the source or receivers
are located in the air. When the displacement current is taken
into account, since the wave propagation constant is real in
the air, there exists a zero vertical wavenumber u0=

√
λ2− k2

0

when we integrate the kernel from zero to infinity along the
real axis of horizontal wavenumber λ. Considering all the ker-
nels have the vertical wavenumber in the denominator, we split
the Gaussian quadrature integral into two parts by the branch
point λ= k0 and sum the two separate results.

ACCURACY TESTS

We have developed a numerical code, HFSHEET, based on
the algorithm described above. The performance of the mode-
ling code is first verified by comparing it with the PLATE pro-
gram (Dyck et al., 1980). Figure 2 shows the model used in Zhou
(1989) and the results of both codes. A conductive square sheet
of 100× 100 m is located in free space, symmetrical about the
plane defined by the boreholes. The target conductance is 1.0 S,
and the operating frequency is 1.0 kHz. A vertical magnetic
dipole source is at 50 m depth, and secondary vertical mag-
netic fields are gathered along the receiving borehole. In the
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FIG. 2. Free-space responses compared with PLATE (Dyck et al., 1980). The thin sheet is 100× 100 m and has 1.0 S conductance
located in a free space and symmetrical about the plane defined by the boreholes. A vertical magnetic dipole source is at 50 m depth,
and secondary vertical magnetic fields are measured along the receiving (Rx) borehole. The model used and the Plate results are
from Zhou (1989).

FIG. 3. The directions and amplitudes of incident electric fields and scattering surface currents on the sheet for the results in Figure 2.
The incident fields show a radiation pattern of electric fields generated by the magnetic dipole source, while the scattering currents
show vortex currents since there is no current leakage from the sheet into the insulating free space.
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computation with HFSHEET, the thin sheet is divided into
10× 10 cells; four eigencurrents are used in running the PLATE
code. Our modeling result converged at a discretization of 8× 8
cells. We can see a good match between the results of the two
programs, but HFSHEET shows slightly larger values espe-
cially in the real component. Incident electric fields and the
distribution of the surface scattering currents on the sheets are
shown in Figure 3. The incident fields show a radiating pattern
resulting from the vertical magnetic dipole source. Since we
consider electrical permittivity as well as conductivity, the real
part of the incident field exists, although it is very small. Since

FIG. 4. High-frequency responses compared with EM1D (Pellerin et al., 1995). Upper left shows the model, including two thin,
conductive sheets embedded in a three-layer earth (not exact in scale). In EM1D, the sheets are simulated with thin layers 0.01 m
thick. For HFSHEET, the size of each sheet is 20× 20 m for frequencies <10 MHz, divided by 10× 10 cells, and is 10× 10 m for
frequencies >10 MHz, divided by maximum 18× 18 cells. The vertical magnetic dipole source of unit moment is located above the
center of the sheets.

the sheet is surrounded by free space, conduction or channeling
currents do not exist, so the scattering current forms a vortex
on the surface of the sheet.

The next step is to test the accuracy at high frequencies where
it is necessary to consider displacement currents. However, the
lack of thin-sheet modeling in that frequency range led us to
compare the results with those of the EM1D code (Pellerin
et al., 1995). Figure 4 shows the model used for the compar-
ison and resulting EM fields. We locate the vertical magnetic
dipole source of unit moment at 2 m below the surface and
the observation position at 8 m below surface and 2 m from
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the source. In such a configuration, received EM fields would
show varying responses of the layered earth and sheets accord-
ing to the frequency changes. The resulting EM fields shown
contain the total field. The earth is composed of three lay-
ers: a thin overburden 0.5 m thick, a 14.5-m-thick host, and
a conductive basement. The layer resistivities are ρ1= 100,
ρ2= 500, and ρ3= 50 ohm-m, while the dielectric constants are
6, 1, and 10, respectively. The conductance and the product
of the thickness and electric permittivity of S1 are 0.02 S and
10× 8.8542× 10−12 F, respectively, while those of S2 are 1.0 S
and 30× 8.8542× 10−12 F, respectively. For the EM1D compu-
tation, the sheets are simulated by thin layers of 0.01 m thick-
ness. For HFSHEET, the horizontal dimensions of the sheets
are 20× 20 m with 100 cells for frequencies<10 MHz. At higher
frequencies we use 10× 10 m sheets with cell division of a maxi-
mum of 18× 18 cells. The source is located directly above the
center of the sheets.

At low frequencies where diffusion dominates, EM fields
mostly show the response of the layered earth and the conduc-
tive lower sheet S2. As the frequency is increased, the upper
sheet S1 starts to play an increasingly important role. Toward
the high-frequency end wave propagation dominates diffusion,
so we see characteristic fluctuations as a function of frequency.
Throughout the entire frequency range, HFSHEET results
match very well with the EM1D result. Both results shown
above indicate HFSHEET produces accurate EM responses
of the sheets throughout the frequency range from diffusion
to wave propagation regime and for the wide range of host
property—even for free space.

EXAMPLES FOR PLANE-WAVE EXCITATION

We tested HFSHEET using a two-sheet model with a plane-
wave source. The test was made for conventional magnetotel-
lurics and the high-frequency impedance method (Song et al.,
2002). Figure 5 shows the model used to compute magnetotel-
luric (MT) responses. Two conductive sheets, one vertical and
the other dipping, with conductance of 10 S are embedded in
a three-layer earth. Operating frequencies range from 10−3 to

FIG. 5. Two thin conductors embedded in a three-layer earth.
Four frequencies per decade are used from 0.01 to 1000 Hz in
the MT modeling.

104 Hz, with four frequencies per decade in logarithmic scale.
Figures 6 and 7 show the apparent resistivity and phase pseu-
dosections for TE- and TM-mode excitations, respectively. The
results are shown only for the frequencies from 10−2 to 103 Hz
since there is no anomaly apparent in the section beyond this
frequency range. We can see clear responses of the conduc-
tive sheets, both in apparent resistivity and phase sections in
TE mode (Figure 6). The dip of the inclined sheet is hardly
resolved in the apparent resistivity section, while we can infer
it from the subtle asymmetric pattern in the phase section. In
TM mode, on the other hand, we can see no response of the

FIG. 6. Apparent resistivity (upper) and phase (lower) sections
of the TE-mode MT impedance Zyx for the model in Figure 5.
Two conductive sheets are easily separated in the upper and
lower sections, although the attitude of the dipping sheet is not
apparent.

FIG. 7. Apparent resistivity (upper) and phase (lower) sections
of the TM-mode MT impedance Zxy for the model in Figure 5.
The vertical sheet is undetectable in TM mode where the pri-
mary and measuring electric field directions are normal to the
sheet. The dipping sheet shows only very weak anomaly be-
neath the station at 2 km, which corresponds to its center.



752 Song et al.

sheets either in the apparent resistivity or in the phase pseu-
dosection. A slight anomaly exists beneath the station at 2 km,
which corresponds to the center of the dipping sheet.

In TM mode excitation there are neither incident electric
fields nor the scattering currents on the vertical sheet alone.
However, there does exist a scattering current in the vertical
sheet as a result of coupling with the dipping sheet. Figure 8
shows incident electric fields on the dipping sheet and scatter-
ing currents in the dipping and the vertical sheets at 10 Hz fre-
quency for the results shown in Figure 7. The polarity change
in the imaginary part of the incident electric fields says the
center of the dipping sheet is at about one skin depth. Current
channeling plays a major role in the scattering current, but we
can still see the vortex current in the imaginary part in the dip-
ping sheet. As shown in Figure 8c, the scattering current in the
vertical sheet is considerable despite the absence of incident
or exciting electric fields. Much of the secondary electric field
as the result of the vertically dominant scattering current can-
cels out along the profile axis, so we cannot see any anomaly
attributable to the vertical sheet.

FIG. 8. The amplitudes and directions of (a) the incident electric fields on the dipping sheet, (b) scattering surface current densities
on the dipping sheet, and (c) scattering surface current densities on the vertical sheet at 10 Hz frequency shown in Figure 7. The
scattering currents can be seen on the vertical sheet, although there are no incident electric fields on it for TM mode, which results
from coupling with the dipping sheet.

Figure 9 shows another model for the high-frequency
impedance method (Song et al., 2002). The impedance mea-
surement technique offers an attractive opportunity for ima-
ging near-surface conductivity and dielectric constant in that
we are free from source coupling, which is difficult to determine
at high frequencies. The geometry in Figure 9 is 1–500 scaled
from that shown in Figure 5: two conductive sheets in a three-
layer earth of which the dielectric constants are newly assigned.
In the high-frequency range, sheets must be defined in terms of
admittance and not just conductance. The two sheets have dif-
ferent admittances from each other, primarily because of elec-
trical permittivity. Operating frequencies range from 10 kHz to
100 MHz, covering the conventional diffusion and wave propa-
gation regimes. Note that for the wave propagation region, we
use linearly increased frequencies; an exponential spacing is
used for low frequency.

For a homogeneous half-space, the amplitude of impedance
increases with the square root of frequency below the fre-
quency, or ωT = σ/ε (Annan, 1996). For frequencies higher
than ωT , the amplitude turns flat and becomes independent
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of frequency. The phase change takes place over a wider band,
from 45◦ in diffusion to 0◦ in wave propagation regimes. For a
layered earth, the interference between multiple reflections in
a layer makes the impedance oscillate as the frequency changes
(Song et al., 2002). Figure 10 shows the amplitude and phase
curves of the impedance on the surface of the layered earth
shown in Figure 9 for normal incidence. We can see from the
amplitude curve that ωT is about 1 MHz. Two kinds of oscilla-
tion start from 3 MHz; they are clearer in the phase curve. The
highly oscillatory feature results from the interference of re-
flections trapped in the top layer, while the broader oscillation
indicates the reflections trapped in the middle layer.

The impedance response for the sheet model is expected
to show these oscillations as in the amplitude and phase of
impedance sections for TE mode incidence (Figure 11). The

FIG. 9. Two-sheet model for high-frequency impedance appli-
cation. All the geometrical parameters are scaled by 1/500 from
those in Figure 5. Both the resistivities and the electric permit-
tivities are assigned to the layers since displacement currents
have an effect on the EM responses at the high-frequency
range. The electrical properties of the sheets should be con-
sidered as admittance rather than conductance. Nineteen fre-
quencies from 10 kHz to 100 MHz, with a logarithmic sampling
of frequencies<10 MHz and every 10 MHz above that, are used
in the modeling.

FIG. 10. Amplitude (left) and phase (right) curves of the
impedance for normal incidence on the layered earth shown
in Figure 9 without the two sheets. For frequencies <1 MHz,
the amplitude increases with the square root of frequency. Two
kinds of oscillatory feature are seen at high frequencies, which
result from the interference of multiple reflections trapped in
each layer.

amplitude and phase show induction responses of the sheets
for frequencies <10 MHz, and we can identify the dipping
sheet from the asymmetric anomalies both in the amplitude
and phase sections. For frequencies>10 MHz, the broad oscil-
lation in Figure 10 is observed but the highly oscillatory feature
is not seen. We can also see small periodic anomalies, which re-
sult from the multiples of diffracted energy from the edges of
the sheets. In TM mode response (Figure 12) we cannot see an
anomaly of the vertical sheet, but the response of the dipping
sheet is clear both in the amplitude and phase of impedance

FIG. 11. Amplitude (upper) and phase (lower) sections of the
TE-mode impedance Zyx for the model shown in Figure 9. The
induction responses of the two sheets can be seen for frequen-
cies <10 MHz, while for higher frequencies the wave propa-
gation phenomena are mixed up with the oscillation for the
layered earth shown in Figure 10.

FIG. 12. Amplitude (upper) and phase (lower) sections of the
TM-mode impedance Zxy for the model shown in Figure 9.
Only the induction responses of the dipping sheet can be seen
for frequencies between 1 and 10 MHz, and periodic anomalies
associated with wave propagation are visible for frequencies
>30 MHz.
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sections. We can identify again the propagating phenomena
of diffracted energy mixed with the broader oscillation above
30 MHz. The oscillating feature of impedance for the layered
earth will not have an effect on the analysis when the 1-D in-
version including displacement currents is applied, even for the
oblique incidence of plane wave (Song et al., 2002). However,
the resonance associated with the propagation of diffracted
or reflected energy from the isolated body must be handled
with a higher-dimension inversion tool to produce an accurate
analysis of the subsurface structure.

CONCLUSIONS

We have developed a wide-band, thin-sheet EM modeling
scheme using the integral equation method. The approach is
based on Weidelt’s (1981) work. Additional features in our
development involve inclusion of the displacement currents in
the formulation, analytic treatment of the singular cell inte-
gral of Green’s function, and generalization of the formulation
with the tensor notation. The model is composed of two sheets
embedded in a three-layer earth. The source field can be gene-
rated by a remote or local electric or magnetic dipole source
on the surface or in a borehole. The conductivity and electrical
permittivity of the host medium and sheets can be arbitrary
and dispersive.

The accuracy of the HFSHEET code has been verified over
a wide range of frequencies and host medium properties. The
HFSHEET code is also used to investigate plane-wave re-
sponses of the two-sheet model in a three-layer earth. In ana-
lyzing the MT responses, we can clearly identify the coupling
between the vertical and dipping sheets by observing the scat-
tering currents in the vertical sheet. In the presence of a TM
mode plane-wave source field, no current would exist in the ver-
tical sheet. In modeling high-frequency impedance, we identify
characteristic responses of the layered earth and sheets as the
frequency increases from the diffusion range to the wave prop-
agation regime.

For accurate evaluation of the Hankel transform involved
in computing Green’s functions for a layered earth, we used a
Gaussian quadrature. The integral is divided into two regions,
one to left of the branch point and the other to the right. As
we increase the frequencies, more sampling in the horizon-
tal wavenumber is required, resulting in a linear increase in
computing time.
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